1. <var id="fe6gj"></var>

    <rp id="fe6gj"><nav id="fe6gj"></nav></rp>

    <noframes id="fe6gj"><cite id="fe6gj"></cite>

    <ins id="fe6gj"><button id="fe6gj"><p id="fe6gj"></p></button></ins>
    1. <tt id="fe6gj"><i id="fe6gj"><sub id="fe6gj"></sub></i></tt>
        始創于2000年 股票代碼:831685
        咨詢熱線:0371-60135900 注冊有禮 登錄
        • 掛牌上市企業
        • 60秒人工響應
        • 99.99%連通率
        • 7*24h人工
        • 故障100倍補償
        您的位置: 網站首頁 > 幫助中心>文章內容

        [全方位了解服務器CPU

        發布時間:  2012/7/26 10:49:52
        服務器的中央處理器(CPU),在內部結構上是跟臺式機的差不多,它們都是由運算器和控制器組成,CPU的內部結構可分為控制單元,邏輯單元和存儲單元三大部分。當然工作原理也是一樣。隨著兩者的需求和發展,臺式機和服務器的處理器在技術、性能指標等各方面都存在并存的現象,一個最明顯的現象,像Intel的奔騰系列產品,一直應用于服務器的低端領域。但不代表著服務器CPU與臺式機將會完全一樣,下面內容會讓你對服務器CPU有個全方位的了解……

        一、產品篇
        廠商
        32bit 64bit
        CISC型 VLIM RISC型
        IA-32 X86-64 IA-64
        AMD64 EM64T
        Intel Pentium、Xeon   Nocona Itanium  
        AMD Athlon MP Opteron      
        Transmeta
        (全美達)
        Efficeon      
        IBM/Apple       POWER、POWERPC
        HP       PA-RISC、Alpha
        SGI       MIPS
        SUN       UltraSPARC

            上面簡單把服務器處理器列了一下表,我們可以很清晰看出,服務器處理器按CPU的指令系統來區分,有CISC型CPU和RISC型CPU兩類,后來出現了一種64位的VLIM指令系統的CPU,這種架構也叫做“IA-64”。目前基于這種指令架構的MPU有Intel的IA-64、EM64T和AMD的x86-64。RISC型的CPU是我們比較不熟悉的類型,下面一一介紹;

        IBM:


           IBM 的四條處理器產品線 —— POWER 體系結構,PowerPC 系列的處理器,Star 系列(很少用于服務器中),以及 IBM 大型機上所采用的芯片

            POWER 是 Power Optimization With Enhanced RISC 的縮寫,是 IBM 的很多服務器、工作站和超級計算機的主要處理器。POWER 芯片起源于 801 CPU,是第二代 RISC 處理器。POWER 芯片在 1990 年被 RS 或 RISC System/6000 UNIX 工作站(現在稱為 eServer 和 pSeries)采用,POWER 的產品有 POWER1、POWER2、POWER3、POWER4,現在最高端的是 POWER5。POWER5 處理器是目前單個芯片中性能最好的芯片。POWER6計劃 2006 年發布。

            PowerPC 是 Apple、IBM 和摩托羅拉(Motorola)聯盟(也稱為 AIM 聯盟)的產物,它基于 POWER 體系結構,但是與 POWER 又有很多的不同。例如,PowerPC 是開放的,它既支持高端的內存模型,也支持低端的內存模型,而 POWER 芯片是高端的。最初的 PowerPC 設計也著重于浮點性能和多處理能力的研究。當然,它也包含了大部分 POWER 指令。很多應用程序都能在 PowerPC 上正常工作,這可能需要重新編譯以進行一些轉換。從 2000 年開始,摩托羅拉和 IBM 的 PowerPC 芯片都開始遵循 Book E 規范,這樣可以提供一些增強特性,從而使得 PowerPC 對嵌入式處理器應用(例如網絡和存儲設備,以及消費者設備)更具有吸引力。PowerPC 體系結構的最大一個優點是它是開放的:它定義了一個指令集(ISA),并且允許任何人來設計和制造與 PowerPC 兼容的處理器;為了支持 PowerPC 而開發的軟件模塊的源代碼都可以自由使用。最后,PowerPC 核心的精簡為其他部件預留了很大的空間,從新添加緩存到協處理都是如此,這樣可以實現任意的設計復雜度。IBM 的 4 條服務器產品線中有兩條與 Apple 計算機的桌面和服務器產品線同樣基于 PowerPC 體系結構,分別是 Nintendo GameCube 和 IBM 的“藍色基因(Blue Gene)”超級計算機,F在,三種主要的 PowerPC 系列是嵌入式 PowerPC 400 系列以及獨立的 PowerPC 700 和 PowerPC 900 系列。而PowerPC 600 系列,是第一個 PowerPC 芯片。它是 POWER 和 PowerPC 體系結構之間的橋梁,F在的PowerPC970,采用0.13微米SOI工藝制造,其內只有一顆CPU核心,帶有512K 芯片內L2 cache。

        HP

            HP(惠普)公司自已開發、研制的適用于服務器的RISC芯片——PA-RISC,于1986年問世。目前,HP主要開發64位超標量處理器PA-8000系列。第一款芯片的型號為PA-8000,主頻為180MHz,后來陸續推出PA-8200、PA-8500、PA-8600、PA-8700、PA-8800型號。還有一個就是HP的“私生子”Alpha。(Alpha處理器最早由DEC公司設計制造,在Compaq公司收購DEC之后,Alpha處理器繼續得到發展,后來又被惠普公司收購)

            HP于2002年開始就公布了其兩大RISC處理器——PA-RISC和Alpha的發展計劃,其中PA-RISC與Alpha處理器至少要發展到2006年,對基于其上的服務器的服務支持將至少持續到2011年。2006年,HP將會推出PA-8900。而對于Alpha的發展,惠普公司于已經于2004年八月份發布了其面向AlphaServer Unix服務器的最后一款處理器產品——EV7z。

        SUN:

            1987年,SUN和TI公司合作開發了RISC微處理器——SPARC。Sun公司以其性能優秀的工作站聞名,這些工作站的心臟全都是采用Sun公司自己研發的Sparc芯片。SPARC微處理器最突出的特點就是它的可擴展性,這是業界出現的第一款有可擴展性功能的微處理。SPARC的推出為SUN贏得了高端微處理器市場的領先地位。

            1999年6月,UltraSPARC III首次亮相。它采用先進的0.18微米工藝制造,全部采用64位結構和VIS指令集,時鐘頻率從600MHz起,可用于高達1000個處理器協同工作的系統上。UltraSPARC III和Solaris操作系統的應用實現了百分之百的二進制兼容,完全支持客戶的軟件投資,得到眾多的獨立軟件供應商的支持。

            根據Sun公司未來的發展規劃,在64位UltraSparc處理器方面,主要有3個系列,首先是可擴展式s系列,主要用于高性能、易擴展的多處理器系統。目前UltraSparc Ⅲs的頻率已經達到750GHz。將推出UltraSparc Ⅳs和UltraSparc Ⅴs等型號。其中UltraSparc Ⅳs的頻率為1GHz,UltraSparc Ⅴs則為1.5GHz。其次是集成式i系列,它將多種系統功能集成在一個處理器上,為單處理器系統提供了更高的效益。已經推出的UltraSparc Ⅲi的頻率達到700GHz,未來的UltraSparc Ⅳi的頻率將達到1GHz。最后是嵌入式e系列,為用戶提供理想的性能價格比,嵌入式應用包括瘦客戶機、電纜調制解調器和網絡接口等。Sun公司還將推出主頻300、400、500MHz等版本的處理器。

        SGI

            MIPS技術公司是一家設計制造高性能、高檔次及嵌入式32位和64位處理器的廠商,在RISC處理器方面占有重要地位。1984年,MIPS計算機公司成立。1992年,SGI收購了MIPS計算機公司。1998年,MIPS脫離SGI,成為MIPS技術公司。
            MIPS公司設計RISC處理器始于二十世紀八十年代初,1986年推出R2000處理器,1988年推R3000處理器,1991年推出第一款64位商用微處器R4000。之后又陸續推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型號。

            隨后,MIPS公司的戰略發生變化,把重點放在嵌入式系統。1999年,MIPS公司發布MIPS32和MIPS64架構標準,為未來MIPS處理器的開發奠定了基礎。新的架構集成了所有原來NIPS指令集,并且增加了許多更強大的功能。MIPS公司陸續開發了高性能、低功耗的32位處理器內核(core)MIPS324Kc與高性能64位處理器內核MIPS64 5Kc。2000年,MIPS公司發布了針對MIPS32 4Kc的版本以及64位MIPS 64 20Kc處理器內核。

            MIPS技術公司是一家設計制造高性能、高檔次及嵌入式32位和64位處理器的廠商。1986年推出R2000處理器,1988年推出R3000處理器,1991年推出第一款64位商用微處理器R4000。之后,又陸續推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型號。1999年,MIPS公司發布MIPS 32和MIPS 64架構標準。2000年,MIPS公司發布了針對MIPS 32 4Kc的新版本以及未來64位MIPS 64 20Kc處理器內核。

         

        二、參數篇

        1.主頻

          主頻也叫時鐘頻率,單位是MHz,用來表示CPU的運算速度。CPU的主頻=外頻×倍頻系數。很多人認為主頻就決定著CPU的運行速度,這不僅是個片面的,而且對于服務器來講,這個認識也出現了偏差。至今,沒有一條確定的公式能夠實現主頻和實際的運算速度兩者之間的數值關系,即使是兩大處理器廠家Intel和AMD,在這點上也存在著很大的爭議,我們從Intel的產品的發展趨勢,可以看出Intel很注重加強自身主頻的發展。像其他的處理器廠家,有人曾經拿過一快1G的全美達來做比較,它的運行效率相當于2G的Intel處理器。
            所以,CPU的主頻與CPU實際的運算能力是沒有直接關系的,主頻表示在CPU內數字脈沖信號震蕩的速度。在Intel的處理器產品中,我們也可以看到這樣的例子:1 GHz Itanium芯片能夠表現得差不多跟2.66 GHz Xeon/Opteron一樣快,或是1.5 GHz Itanium 2大約跟4 GHz Xeon/Opteron一樣快。CPU的運算速度還要看CPU的流水線的各方面的性能指標。

          當然,主頻和實際的運算速度是有關的,只能說主頻僅僅是CPU性能表現的一個方面,而不代表CPU的整體性能。

        2.外頻

          外頻是CPU的基準頻率,單位也是MHz。CPU的外頻決定著整塊主板的運行速度。說白了,在臺式機中,我們所說的超頻,都是超CPU的外頻(當然一般情況下,CPU的倍頻都是被鎖住的)相信這點是很好理解的。但對于服務器CPU來講,超頻是絕對不允許的。前面說到CPU決定著主板的運行速度,兩者是同步運行的,如果把服務器CPU超頻了,改變了外頻,會產生異步運行,(臺式機很多主板都支持異步運行)這樣會造成整個服務器系統的不穩定。
            目前的絕大部分電腦系統中外頻也是內存與主板之間的同步運行的速度,在這種方式下,可以理解為CPU的外頻直接與內存相連通,實現兩者間的同步運行狀態。外頻與前端總線(FSB)頻率很容易被混為一談,下面的前端總線介紹我們談談兩者的區別。

        3.前端總線(FSB)頻率

          前端總線(FSB)頻率(即總線頻率)是直接影響CPU與內存直接數據交換速度。有一條公式可以計算,即數據帶寬=(總線頻率×數據帶寬)/8,數據傳輸最大帶寬取決于所有同時傳輸的數據的寬度和傳輸頻率。比方,現在的支持64位的至強Nocona,前端總線是800MHz,按照公式,它的數據傳輸最大帶寬是6.4GB/秒。

           外頻與前端總線(FSB)頻率的區別:前端總線的速度指的是數據傳輸的速度,外頻是CPU與主板之間同步運行的速度。也就是說,100MHz外頻特指數字脈沖信號在每秒鐘震蕩一千萬次;而100MHz前端總線指的是每秒鐘CPU可接受的數據傳輸量是100MHz×64bit÷8Byte/bit=800MB/s。

            其實現在“HyperTransport”構架的出現,讓這種實際意義上的前端總線(FSB)頻率發生了變化。之前我們知道IA-32架構必須有三大重要的構件:內存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片組 Intel 7501、Intel7505芯片組,為雙至強處理器量身定做的,它們所包含的MCH為CPU提供了頻率為533MHz的前端總線,配合DDR內存,前端總線帶寬可達到4.3GB/秒。但隨著處理器性能不斷提高同時給系統架構帶來了很多問題。而“HyperTransport”構架不但解決了問題,而且更有效地提高了總線帶寬,比方AMD Opteron處理器,靈活的HyperTransport I/O總線體系結構讓它整合了內存控制器,使處理器不通過系統總線傳給芯片組而直接和內存交換數據。這樣的話,前端總線(FSB)頻率在AMD Opteron處理器就不知道從何談起了。

        4、CPU的位和字長

          位:在數字電路和電腦技術中采用二進制,代碼只有“0”和“1”,其中無論是 “0”或是“1”在CPU中都是 一“位”。

          字長:電腦技術中對CPU在單位時間內(同一時間)能一次處理的二進制數的位數叫字長。所以能處理字長為8位數據的CPU通常就叫8位的CPU。同理32位的CPU就能在單位時間內處理字長為32位的二進制數據。 字節和字長的區別:由于常用的英文字符用8位二進制就可以表示,所以通常就將8位稱為一個字節。字長的長度是不固定的,對于不同的CPU、字長的長度也不一樣。8位的CPU一次只能處理一個字節,而32位的CPU一次就能處理4個字節,同理字長為64位的CPU一次可以處理8個字節。

        5.倍頻系數

          倍頻系數是指CPU主頻與外頻之間的相對比例關系。在相同的外頻下,倍頻越高CPU的頻率也越高。但實際上,在相同外頻的前提下,高倍頻的CPU本身意義并不大。這是因為CPU與系統之間數據傳輸速度是有限的,一味追求高倍頻而得到高主頻的CPU就會出現明顯的“瓶頸”效應—CPU從系統中得到數據的極限速度不能夠滿足CPU運算的速度。一般除了工程樣版的Intel的CPU都是鎖了倍頻的,而AMD之前都沒有鎖。

        6.緩存

         

          緩存大小也是CPU的重要指標之一,而且緩存的結構和大小對CPU速度的影響非常大,CPU內緩存的運行頻率極高,一般是和處理器同頻運作,工作效率遠遠大于系統內存和硬盤。實際工作時,CPU往往需要重復讀取同樣的數據塊,而緩存容量的增大,可以大幅度提升CPU內部讀取數據的命中率,而不用再到內存或者硬盤上尋找,以此提高系統性能。但是由于CPU芯片面積和成本的因素來考慮,緩存都很小。

            L1 Cache(一級緩存)是CPU第一層高速緩存,分為數據緩存和指令緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般服務器CPU的L1緩存的容量通常在32—256KB。

          L2 Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種芯片。內部的芯片二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是512KB,而服務器和工作站上用CPU的L2高速緩存更高達256-1MB,有的高達2MB或者3MB。

            L3 Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對游戲都很有幫助。而在服務器領域增加L3緩存在性能方面仍然有顯著的提升。比方具有較大L3緩存的配置利用物理內存會更有效,故它比較慢的磁盤I/O子系統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件系統緩存行為及較短消息和處理器隊列長度。

            其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限于制造工藝,并沒有被集成進芯片內部,而是集成在主板上。在只能夠和系統總線頻率同步的L3緩存同主內存其實差不了多少。后來使用L3緩存的是英特爾為服務器市場所推出的Itanium處理器。接著就是P4EE和至強MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以后24MB L3緩存的雙核心Itanium2處理器。

            但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端總線的增加,要比緩存增加帶來更有效的性能提升。

        7.CPU擴展指令集

          CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬件電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。從現階段的主流體系結構講,指令集可分為復雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把CPU的擴展指令集稱為"CPU的指令集"。SSE3指令集也是目前規模最小的指令集,此前MMX包含有57條命令,SSE包含有50條命令,SSE2包含有144條命令,SSE3包含有13條命令。目前SSE3也是最先進的指令集,英特爾Prescott處理器 已經支持SSE3指令集,AMD會在未來雙核心處理器當中加入對SSE3指令集的支持,全美達的處理器也將支持這一指令集。

        8.CPU內核和I/O工作電壓

          從586CPU開始,CPU的工作電壓分為內核電壓和I/O電壓兩種,通常CPU的核心電壓小于等于I/O電壓。其中內核電壓的大小是根據CPU的生產工藝而定,一般制作工藝越小,內核工作電壓越低;I/O電壓一般都在1.6~5V。低電壓能解決耗電過大和發熱過高的問題。

        9.制造工藝

          制造工藝的微米是指IC內電路與電路之間的距離。制造工藝的趨勢是向密集度愈高的方向發展。密度愈高的IC電路設計,意味著在同樣大小面積的IC中,可以擁有密度更高、功能更復雜的電路設計,F在主要的180nm、130nm、90nm。最近官方已經表示有65nm的制造工藝了。

        10.指令集

        (1)CISC指令集

          CISC指令集,也稱為復雜指令集,英文名是CISC,(Complex Instruction Set Computer的縮寫)。在CISC微處理器中,程序的各條指令是按順序串行執行的,每條指令中的各個操作也是按順序串行執行的。順序執行的優點是控制簡單,但計算機各部分的利用率不高,執行速度慢。其實它是英特爾生產的x86系列(也就是IA-32架構)CPU及其兼容CPU,如AMD、VIA的。即使是現在新起的X86-64(也被成AMD64)都是屬于CISC的范疇。

            要知道什么是指令集還要從當今的X86架構的CPU說起。X86指令集是Intel為其第一塊16位CPU(i8086)專門開發的,IBM1981年推出的世界第一臺PC機中的CPU—i8088(i8086簡化版)使用的也是X86指令,同時電腦中為提高浮點數據處理能力而增加了X87芯片,以后就將X86指令集和X87指令集統稱為X86指令集。

          雖然隨著CPU技術的不斷發展,Intel陸續研制出更新型的i80386、i80486直到過去的PII至強、PIII至強、Pentium 3,最后到今天的Pentium 4系列、至強(不包括至強Nocona),但為了保證電腦能繼續運行以往開發的各類應用程序以保護和繼承豐富的軟件資源,所以Intel公司所生產的所有CPU仍然繼續使用X86指令集,所以它的CPU仍屬于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天龐大的X86系列及兼容CPU陣容。x86CPU目前主要有intel的服務器CPU和AMD的服務器CPU兩類。

        (2)RISC指令集

          RISC是英文“Reduced Instruction Set Computing ” 的縮寫,中文意思是“精簡指令集”。它是在CISC指令系統基礎上發展起來的,有人對CISC機進行測試表明,各種指令的使用頻度相當懸殊,最常使用的是一些比較簡單的指令,它們僅占指令總數的20%,但在程序中出現的頻度卻占80%。復雜的指令系統必然增加微處理器的復雜性,使處理器的研制時間長,成本高。并且復雜指令需要復雜的操作,必然會降低計算機的速度;谏鲜鲈,20世紀80年代RISC型CPU誕生了,相對于CISC型CPU ,RISC型CPU不僅精簡了指令系統,還采用了一種叫做“超標量和超流水線結構”,大大增加了并行處理能力。RISC指令集是高性能CPU的發展方向。它與傳統的CISC(復雜指令集)相對。相比而言,RISC的指令格式統一,種類比較少,尋址方式也比復雜指令集少。當然處理速度就提高很多了。目前在中高檔服務器中普遍采用這一指令系統的CPU,特別是高檔服務器全都采用RISC指令系統的CPU。RISC指令系統更加適合高檔服務器的操作系統UNIX,現在Linux也屬于類似UNIX的操作系統。RISC型CPU與Intel和AMD的CPU在軟件和硬件上都不兼容。

            目前,在中高檔服務器中采用RISC指令的CPU主要有以下幾類:PowerPC處理器 、SPARC處理器、PA-RISC處理器、MIPS處理器、Alpha處理器。

        (3)IA-64

            EPIC(Explicitly Parallel Instruction Computers,精確并行指令計算機)是否是RISC和CISC體系的繼承者的爭論已經有很多,單以EPIC體系來說,它更像Intel的處理器邁向RISC體系的重要步驟。從理論上說,EPIC體系設計的CPU,在相同的主機配置下,處理Windows的應用軟件比基于Unix下的應用軟件要好得多。

            Intel采用EPIC技術的服務器CPU是安騰Itanium(開發代號即Merced)。它是64位處理器,也是IA-64系列中的第一款。微軟也已開發了代號為Win64的操作系統,在軟件上加以支持。在Intel采用了X86指令集之后,它又轉而尋求更先進的64-bit微處理器,Intel這樣做的原因是,它們想擺脫容量巨大的x86架構,從而引入精力充沛而又功能強大的指令集,于是采用EPIC指令集的IA-64架構便誕生了。IA-64 在很多方面來說,都比x86有了長足的進步。突破了傳統IA32架構的許多限制,在數據的處理能力,系統的穩定性、安全性、可用性、可觀理性等方面獲得了突破性的提高。

            IA-64微處理器最大的缺陷是它們缺乏與x86的兼容,而Intel為了IA-64處理器能夠更好地運行兩個朝代的軟件,它在IA-64處理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解碼器,這樣就能夠把x86指令翻譯為IA-64指令。這個解碼器并不是最有效率的解碼器,也不是運行x86代碼的最好途徑(最好的途徑是 直接在x86處理器上運行x86代碼),因此Itanium 和Itanium2在運行x86應用程序時候的性能非常糟糕。這也成為X86-64產生的根本原因。

        (4)X86-64 (AMD64 / EM64T)

            AMD公司設計,可以在同一時間內處理64位的整數運算,并兼容于X86-32架構。其中支持64位邏輯定址,同時提供轉換為32位定址選項;但數據操作指令默認為32位和8位,提供轉換成64位和16位的選項;支持常規用途寄存器,如果是32位運算操作,就要將結果擴展成完整的64位。這樣,指令中有“直接執行”和“轉換執行”的區別,其指令字段是8位或32位,可以避免字段過長。

            x86-64(也叫AMD64)的產生也并非空穴來風,x86處理器的32bit尋址空間限制在4GB內存,而IA-64的處理器又不能兼容x86。AMD充分考慮顧客的需求,加強x86指令集的功能,使這套指令集可同時支持64位的運算模式,因此AMD把它們的結構稱之為x86-64。在技術上AMD在x86-64架構中為了進行64位運算,AMD為其引入了新增了R8-R15通用寄存器作為原有X86處理器寄存器的擴充,但在而在32位環境下并不完全使用到這些寄存器。原來的寄存器諸如EAX、EBX也由32位擴張至64位。在SSE單元中新加入了8個新寄存器以提供對SSE2的支持。寄存器數量的增加將帶來性能的提升。與此同時,為了同時支持32和64位代碼及寄存器,x86-64架構允許處理器工作在以下兩種模式:Long Mode(長模式)和Legacy Mode(遺傳模式),Long模式又分為兩種子模式(64bit模式和Compatibility mode兼容模式)。該標準已經被引進在AMD服務器處理器中的Opteron處理器。

            而今年也推出了支持64位的EM64T技術,再還沒被正式命為EM64T之前是IA32E,這是英特爾64位擴展技術的名字,用來區別X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技術類似,采用64位的線性平面尋址,加入8個新的通用寄存器(GPRs),還增加8個寄存器支持SSE指令。與AMD相類似,Intel的64位技術將兼容IA32和IA32E,只有在運行64位操作系統下的時候,才將會采用IA32E。IA32E將由2個sub-mode組成:64位sub-mode和32位sub-mode,同AMD64一樣是向下兼容的。Intel的EM64T將完全兼容AMD的X86-64技術,F在Nocona處理器已經加入了一些64位技術,Intel的Pentium 4E處理器也支持64位技術。

            應該說,這兩者都是兼容x86指令集的64位微處理器架構,但EM64T與AMD64還是有一些不一樣的地方,AMD64處理器中的NX位在Intel的處理器中將沒有提供。


        本文出自:億恩科技【www.endtimedelusion.com】

        服務器租用/服務器托管中國五強!虛擬主機域名注冊頂級提供商!15年品質保障!--億恩科技[ENKJ.COM]

      1. 您可能在找
      2. 億恩北京公司:
      3. 經營性ICP/ISP證:京B2-20150015
      4. 億恩鄭州公司:
      5. 經營性ICP/ISP/IDC證:豫B1.B2-20060070
      6. 億恩南昌公司:
      7. 經營性ICP/ISP證:贛B2-20080012
      8. 服務器/云主機 24小時售后服務電話:0371-60135900
      9. 虛擬主機/智能建站 24小時售后服務電話:0371-60135900
      10. 專注服務器托管17年
        掃掃關注-微信公眾號
        0371-60135900
        Copyright© 1999-2019 ENKJ All Rights Reserved 億恩科技 版權所有  地址:鄭州市高新區翠竹街1號總部企業基地億恩大廈  法律顧問:河南亞太人律師事務所郝建鋒、杜慧月律師   京公網安備41019702002023號
          0
         
         
         
         

        0371-60135900
        7*24小時客服服務熱線

         
         
        av不卡不卡在线观看_最近2018年中文字幕_亚洲欧美一区二区三区_一级A爱做片免费观看国产_日韩在线中文天天更新_伊人中文无码在线